JOM 23428

Reactions of coordinated ligands

VII *. Preparation of $(CO)_5 MR(H)PP(Cl)RM(CO)_5 (M = Cr, Mo, W; R = Ph, NEt_2)$ by dehydrohalogenation of $(CO)_5 MPRHCl$, and some of their reactions leading to complexes with bridging diphosphine ligands **.**

A. Bartmann, K. Diemert and W. Kuchen

Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, W-4000 Düsseldorf 1, Germany (Received November 2, 1992)

Abstract

Removal of HCl from $(CO)_5$ MPRHCl (M = Cr, Mo, W; R = Ph, NEt₂) by treatment with NEt₃ has given the complexes $(CO)_5$ MPh(H)PP(Cl)PhM(CO)₅ (M = Cr, Mo, W) (1) and $(CO)_5$ CrNEt₂(H)PP(Cl)NEt₂Cr(CO)₅ (2) containing bridging diphosphine ligands. Surprisingly, $(CO)_5$ CrCl₂PPCl₂Cr(CO)₅ (3) was formed from treatment of $(CO)_5$ CrPHCl₂ with NEt₃. Reaction of 1 with tetrabutylammoniumfluoride, of 2 with gaseous HCl, and of 3 with MeOH gave $(CO)_5$ CrPh(H)PP(F)PhCr(CO)₅ (4), $(CO)_5$ CrCl(H)PPCl₂Cr(CO)₅ (5) and $(CO)_5$ Cr(MeO)₂PP(OMe)₂Cr(CO)₅ (6) respectively. Except for Cl₂PPCl₂, the diphosphine ligands in 1–6 are unknown in the free state. Attempts to abstract HCl from 1 to give the diphosphene complex $(CO)_5$ CrPhP=PPhCr(CO)₅ failed.

1. Introduction

Recently, we showed by using neutralisation-reionisation mass spectrometry (NRMS) that certain small molecules containing phosphorus, e.g. H₂PSH, H₃PCH₂, HSP, and its isomer HPS can exist in the rarefied gas phase in the mass spectrometer. They are kinetically unstable and so accessible only by methods which preclude intermolecular interactions [1].

An alternative route to such species used by our group involves their generation within the coordination sphere of a complex. Thus, by suitable reactions of coordinated ligands we obtained, for example, complexes containing diphosphine ligands like P_2Br_4 and

R(X)PP(X)R (R = aryl, X = H, Br, I) which are metastable or still unknown in the free state [2]. Coordination of the species via phosphorus to $M(CO)_5$ centres strongly reduces their nucleophilicity, presumably the main source of instability for many P^{III} compounds containing combinations of P-P/, P-halogen/ and P-H/bonds [3].

We describe below the preparation of complexes containing functionalized diphosphines that can be used as starting materials in the synthesis of further compounds containing diphosphines as bridging ligands.

2. Preparation of the complexes (CO)₅MR(H)PP(Cl)-RM(CO)₅ (1,2)

We have found that compounds 1 and 2 can be easily prepared in good yields by reaction of coordinated phosphines RPHCl with triethylamine according to eqn. (1). The precursor complexes $(CO)_5$ MPRHCl can be readily made by various methods [4–10]. The preparation of $(CO)_5$ CrPHClNEt₂ (see Experimental

Correspondence to: Professor Dr. W. Kuchen.

^{*} For Part VI, see ref. 4.

^{**} Part of the Dissertation of A. Bartmann, Heinrich-Heine-Universität Düsseldorf, 1992.

^{***} Dedicated to Professor Dietrich Mootz on the occasion of his 60th birthday.

	Isomer 1			Isomer II		
	$\delta(P)_{\Lambda}$ (ppm)	$\delta(P)_X$ (ppm)	¹ J(PP) (Hz)	$\overline{\delta(\mathbf{P})}_{A}$ (ppm)	$\delta(P)_{\chi}$ (ppni)	¹ J(PP) (Hz)
1a ^a	164.7 (d)	60.0 (d)	177	158.3 (d) ^b	64.1 (d) '	186 ^J
lb a	129.4 (d)	40.2 (d)	177	123.0 (d)	43.1 (d)	178
le a	95.8 (d)	17.5 (d)	164	91.1 (d)	21,4 (d)	164
2 e	210.6 (d)	133.9 (d)	243			

TABLE L ³¹P{¹H} NMR spectroscopic data for crude (CO)₅MR(CDP_AP_X(H)RM(CO)₅ (1a-1c) and 2, with 1 as the predominant isomer

^a In CDCl₃. ^b Lit. [11] 157.7 (d) (in CH₂Cl₂). ^c Lit. [11] 62.6 (d) (in CH₂Cl₂). ^d Lit. [11] 186 (in CH₂Cl₂). ^c In C₆D₆,

section) is described here for the first time. Complexes 1 and 2 form yellow crystals that are fairly stable in the solid state even when exposed to moist air. They are readily soluble in benzene, toluene, or chlorinated hydrocarbons.

$$2 \underbrace{\widehat{M}}_{R} \xrightarrow{P}_{R} Cl \xrightarrow{+NEt, HCl} \underbrace{\widehat{M}}_{R} \xrightarrow{P}_{R} \xrightarrow{P}_{R} \underbrace{M}_{R} \underbrace{M}_{R} \xrightarrow{P}_{R} \underbrace{M}_{R} \underbrace{M}_{R} \xrightarrow{P}_{R} \underbrace{M}_{R} \xrightarrow{M}_{R} \underbrace{M}_{R} \underbrace{M}_{R} \underbrace{M}_{R} \xrightarrow{M}_{R} \underbrace{M}_{R} \underbrace{M} \underbrace{M}_{R}$$

Since 1 and 2 contain two chiral phosphorus centres, the products obtained are expected to be mixtures of the *threo*- and *erythro*-forms, giving rise to two groups of signals in the ³¹P{¹H} NMR spectrum. In the case of the compounds **1a-1c**, the spectra of the crude products do indeed show two AX spin systems, in an approximate intensity ratio 4:1. After repeated recrystallization, the predominant diastereomers were obtained in the pure state. In contrast to 1, solutions of crude 2 exhibit only one AX spin system, suggesting a stereospecific reaction (Table 1).

Huttner *et al.* [11] obtained **1a** by addition of HCl to $(CO)_5CrPhP=PPhCr(CO)_5$; they assumed *trans* addition, and hence a *threo* configuration of the diphosphine ligand. Comparison of their NMR data with ours shows that in the reaction shown in eqn. (1), the *erythro* isomers of **1** are preferentially formed. It is noteworthy that the predominating isomers of **1** gradually undergo isomerization (*erythro-threo* conversion?) when kept in CDCl₃ solution for days and weeks.

3. Preparation of (CO)₅CrCl₂PPCl₂Cr(CO)₅ (3)

Surprisingly, $(CO)_5CrPHCl_2$ (the preparation of which is described here for the first time) is treated with NEt₃ according to eqn. (1), complex 3 is the main product rather than the expected complex 5. Complex

3 was previously prepared by electrochemical reduction of $(CO)_5CrPCl_3$ [12]. The route taken by this reaction is still unknown. However, we found that in the initial stage of the reaction (after addition of 0.5 mol of NEt₃) the solution contained mainly **5** and unchanged starting material. When all the NEt₃ had been added, the solution contained **3** and several phosphorus compounds that have not been identified. Later on in our investigations, we found (see below) a method of preparing pure **5**, and it should be possible to study its reaction with NEt₃ in the presence or absence of $(CO)_5CrPHCl_2$.

4. Reactions of complexes 1-3

Dehydrohalogenation of **1a** with NEt₃ or other bases under various conditions did not give the expected diphosphene complex $(CO)_5CrPhP=PPhCr(CO)_5$, but instead a complex mixture of products. However, a transient change in colour of the solution from yellow to deep purple during the reaction suggests the intermediate formation of low-coordinate phosphorus compounds.

When **1a** was treated with tetrabutylammonium fluoride in toluene at room temperature for 45 min, the Cl was completely replaced by F, to give **4**. The complex **4** obtained in this way turned out to be a mixture of two diastereoisomers in a 2:1 ratio. After repeated recrystallization from toluene, the predominant isomer was obtained in pure form as yellow crystals. The corresponding ${}^{31}P{}^{1}H{}$ NMR spectrum, data from which are given in Table 2, shows the expected resonance patterns and coupling constants.

TABLE 2. ³¹P{¹H} NMR spectroscopic data in C_6D_6 of crude (CO)₅CrPh(F)P_AP_X(H)PhCr(CO)₅ (4): I is the predominating isomer

	$\delta(P)_{\Lambda}$ (ppm)	$\delta(P)_{\rm X}$ (ppm)	^T J(PP) (Hz)	¹ J(PF) (Hz)	² J(PF) (Hz)
Isomer I	237.8 (dd)	48.6 (dd)	179	899	68
Isomer II	230.7 (dd)	55.7 (dd)	183	898	76

When 1a-1c was treated with gaseous HCl in pentane, no reaction was observed. Similarly, the P-P bond remains intact when 2 is treated with HCl under the same conditions. However, the NEt₂ groups in the latter are gradually replaced by Cl, with formation of 5, the reaction being complete after 20 min when CH_2Cl_2 is used as a solvent.

(5)

By means of ³¹P NMR spectroscopy it was shown that the first step in the reaction is the formation of the partially substituted complex (CO)₅CrCl(H)PP(Cl) NEt₂Cr(CO)₅. Subsequently it undergoes complete substitution to give 5. The ³¹P{¹H} NMR spectrum of (CO)₅CrCl₂P_AP_X(H)ClCr(CO)₅ (5) shows an AX pattern with chemical shifts δ (P)_A 201.3 ppm (d), δ (P)_X 144.2 ppm (d), and the coupling constant ¹J(PP) = 204 Hz.

When we consider the range of tetraalkoxydiphosphines $(RO)_2 PP(OR)_2$ that have been reported [13–16], we find it remarkable that the compound in which R is Me is still unknown. Perhaps this compound is unstable. Reaction of **3** with MeOH at room temperature for 3 days gave compound **6** as a white powder that gradually became beige upon exposure to moist air.

$$(CO)_5Cr(MeO)_2PP(OMe)_2Cr(CO)_5$$

(6)

The ³¹P{¹H} NMR spectrum of **6** exhibits a singlet at $\delta(P)$ 224.5 ppm.

5. Conclusions

It has been shown that complexes 1 and 2 containing functionalized diphosphines as bridging ligands are readily accessible. Because of the presence of reactive P-H, P-Cl or P-N bonds, they are versatile starting

$$2 \bigoplus PRHCl \xrightarrow{+NEt_3}_{-NEt_3 \cdot HCl} \bigoplus R(H)PP(Cl)R \bigoplus$$

$$(M) = M(CO)_5; M = Cr, Mo, W; R = Ph, NEt_2$$

$$(Cr)Ph(H)PP(Cl)Ph(Cr) \xrightarrow{Cl/F-exchange} (Cr)Ph(H)PP(F)Ph(Cr)$$

$$(Cr)NEt_2(H)PP(Cl)NEt_2(Cr) \xrightarrow{HCl_8} (Cr)Cl(H)PPCl_2(Cr)$$

$$2 (Cr)PHCl_2 \xrightarrow{NEt_3} (Cr)Cl_2PPCl_2(Cr) \xrightarrow{MeOH} (Cr)(MeO)_2PP(OMe)_2(Cr)$$

a.o.

Scheme 1.

materials for the synthesis of further diphosphine complexes, e.g. **4–6**, which cannot be prepared by conventional methods because the corresponding free diphosphines are presumably kinetically unstable. The reactions are summarized in Scheme 1.

6. Experimental details

6.1. General procedures

All operations were carried out under nitrogen. Nitrogen and solvents were purified and dried by standard methods. Silica gel was silanized as reported in [17]. Melting points are uncorrected. ³¹P{¹H} NMR, Bruker AM 200 (81 MHz); ¹H NMR, Bruker AM 200 (200 MHz); ¹⁹F NMR, Bruker AM 200 (188 MHz); chemical shifts are relative to external 85% H₃PO₄ (^{31}P) and internal (CH₃)₄Si (¹H), C₆F₆ (¹⁹F) as reference compounds; positive shifts are to high frequency. Abbreviations used are as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; c, centred. Values of coupling constants are in Hz. IR, Perkin-Elmer PE 283; IR spectra were recorded in the range 2200-1600 cm⁻¹ in pentane solution. MS, Varian MAT 311 A; m/z data refer to the highest peak of a polyisotopic group.

6.2. Preparation of $(CO)_5 CrPHClNEt_2$ and its precursors

6.2.1. $(CO)_5 CrPCl(NEt_2)_2$

A solution of $(CO)_5 Cr \cdot THF$, prepared from $Cr(CO)_6$ (10 mmol) and 130 ml of THF (ultraviolet irradiation for 45 min; Normag photoreactor, TQ 150 Hanau), was added to 10 mmol of $CIP(NEt_2)_2$ and the mixture was stirred for 2 h. The solvent and unchanged $Cr(CO)_6$ were then removed at 40°C *in vacuo*. The crude product was dissolved in pentane and chromatographed on silica gel (column size $4 \times 2.5 \text{ cm}^2$). Elution with pentane gave a yellow fraction, and after

removal of the solvent the pure complex was obtained in 80% yield as a yellow oil.

6.2.1.1. Pentacarbonyl-chloro-bis(diethylamino)phosphinechromium. Anal. Found: C, 38.94; H, 5.12; N, 6.91; Cl, 8.80. C₁₃H₂₀ClCrN₂O₅P (402.7) calc.: C, 38.77; H, 5.01; N, 6.96; Cl, 8.81%. ³¹P{¹H} NMR (in C₆D₆): δ(P) 202.2 (s) ppm. ¹H NMR (in C₆D₆): δ(H)(CH₃) 1.12 (t, ³J(HCCH) = 7.0 Hz); δ(H)(NCH₂) 3.19 (mc, ³J(PNCH) = 14.0 Hz) ppm. EI-MS: m/z 402 (20%) [M]⁺; ν(CO) 2066m, 2021w, 1988s, 1960, 1947vs cm⁻¹.

6.2.2. $(CO)_5 CrPH(NEt_2)_2$

In a previously described procedure [4], a solution of 10 mmol of $(CO)_5 CrPCl(NEt_2)_2$ was added dropwise to 5 mmol of LiAlH₄ in 30 ml of diethyl ether at -80° C. The mixture was allowed to warm to room temperature and stirred for 6 h. After filtration, the solvent was removed *in vacuo* at room temperature. The residue was taken up in pentane and chromatographed on silica gel with pentane as eluent. The eluate was evaporated to dryness to give $(CO)_5$ CrPH- $(NEt_2)_2$ as a light yellow oil in 90% yield.

Pentacarbonyl-bis(diethylamino)phosphinechromium. Anal. Found: C, 42.15; H, 5.88; N, 7.43, $C_{13}H_{21}CrN_2O_5P$ (368.3) calc.: C, 42.40; H, 5.75; N, 7.61%. ³¹P{¹H} NMR (in C₆D₆): δ (P) 126.9 (s) ppm. ¹H NMR (in C₆D₆): δ (H)(CH₃) 0.88 (t, ³*J*(HCCH) = 7.1 Hz); δ (H)(NCH₂) 2.86 (mc, ³*J*(PNCH) = 14.0 Hz); δ (H)(PH) 6.85 (d, ³*J*(PH) = 386.9 Hz) ppm. EI-MS: *m/z* 368 (21%) [M]⁺; ν (CO) 2057m, 1979m, 1943, 1936vs cm⁻¹.

6.2.3. (CO)₅CrPHClNEt₂

In a previously described procedure [4], a solution of 10 mmol of $(CO)_5CrPH(NEt_2)_2$ in 40 ml of pentane was treated with gaseous hydrogen chloride for 5 min at 0°C. After removal of the solvent *in vacuo* at room temperature, the residue was extracted with 25–50 ml of pentane. The extract was filtered and the filtrate evaporated to dryness. The residue was chromatographed on silica gel to give $(CO)_5CrPHCINEt_2$ as an orange oil in 85% yield.

Pentacarbonyl-chlorodiethylaminophosphinechromium. Anal. Found: C, 32.54; H, 3.31; N, 3.93; Cl, 10.61. C₉H₁₁ClCrNO₅P (331.6) calc.: C, 32.60; H, 3.34; N, 4.22; Cl, 10.69%. ³¹P{¹H} NMR (in C₆D₆): δ (P) 149.5 (s) ppm. ¹H NMR (in C₆D₆): δ (H)(CH₃) 0.93 (t, ³J(HCCH) = 7.2 Hz); δ (H)(NCH₂) 2.98 (mc, ³J(PNCH) = 14.3 Hz; δ (H)(PH) 7.61 (d, ¹J(PH) = 402.4 Hz ppm. EI-MS; m/z 331 (17%) [M]⁺; ν (CO) 2078s, 2024w, 1989m, 1973, 1960vs cm⁻¹.

6.3. Preparation of (CO)₅CrPHCl₅

A solution of 10 mmol of $(CO)_5CrPH(NEt_2)_2$ in 40 ml of CH_2Cl_2 was treated with gaseous hydrogen chloride for 10 min at 0°C. The mixture was worked up as described above to give $(CO)_5CrPHCl_2$ as yellow crystals in 85% yield.

Pentacarbonyl-dichlorophosphinechromium. Anal. Found: C. 20.39; H, 0.40; Cl, 24.19. $C_5HCl_2CrO_5P$ (294.9) calc.: C, 20.36; H, 0.34; Cl, 24.04%. ³¹P{¹H} NMR (in C_6D_6): $\delta(P)$ 155.5 (s) ppm. ¹H NMR (in C_6D_6); $\delta(H)(PH)$ 8.90 (d, ¹J(PH) = 391.1 Hz) ppm. EI-MS: m/z 294 (53%) [M]⁺; ν (CO) 2081m, 1996vs, 1973vs cm⁻¹; m.p. 30–31°C (dec.).

6.4. General procedure for the preparation of $(CO)_5$ MPh(H)PP(Cl)PhM(CO)₅ (Ia-Ic)

Triethylamine (5 mmol) was added dropwise to a solution of 10 mmol of $(CO)_5$ MPhPHCl in 30 ml of toluene at -35° C. The mixture was stirred for 30 min and then allowed to warm slowly to room temperature. After removal of the solvent *in vacuo*, the residue was washed with 30 ml of pentane (in which the diphosphine complex is only sparingly soluble) and then dissolved in toluene and chromatographed on silica gel (column size $5 \times 2.5 \text{ cm}^2$; eluent toluene). The yellow fraction was reduced *in vacuo* to a volume of 20 ml, and kept at -4° C to give pure isomers of **1a-1c** as yellow crystals in 60–65% yield.

Decacarbonyl- μ -1-chloro-1,2-diphenyldiphosphinedichromium (1a). Anal. Found: C, 40.64; H, 1.85; Cl, 5.40. C₂₂H₁₁ClCr₂O₁₀P₂ (636.7) calc.: C, 41.50; H, 1.74; Cl, 5.57%. ¹H NMR (in CDCl₃): δ (H)(C₆H₅) 7.50 (mc); δ (H)(PH) 6.21 (dd, ¹J(PH) = 312.6 Hz; ²J(PH) = 19.5 Hz) ppm. EI-MS: m/z 636 (12%) [M]⁺; ν (CO) 2065m, 2027w, 1989m, 1970, 1964vs cm⁻¹; m.p. 138– 138.5°C (dec.).

Decacarbonyl- μ -1-chloro-1,2-diphenyldiphosphinedimolybdenum (**1b**). Anal. Found: C, 36.47; H, 1.47; Cl, 4.99. C₂₂H₁₁ClMo₂O₁₀P₂ (724.6) calc.: C, 36.47; H, 1.53; Cl, 4.89%. ¹H NMR (in CDCl₃): δ (H)(C₆H₅) 7.62 (mc); δ (H)(PH) 6.19 (dd, ¹J(PH) = 312.1 Hz, ²J(PH) = 16.6 Hz) ppm. EI-MS: m/z = 724 (71%) [M]⁺; ν (CO) 2070m, 2024w, 1988m, 1973, 1963vs cm⁻¹; m.p.: 144– 144.5°C (dec.).

Decacarbonyl- μ -1-chloro-1,2-diphenyldiphosphineditungsten (1c). Anal. Found: C, 29.15; H, 1.15; Cl, 3.78. C₂₂H₁₁ClO₁₀P₂W₂ (900.4) calc.: C, 29.35; H, 1.23; Cl, 3.94%. ¹H NMR (in CDCl₃): δ (H)(C₆H₅) 7.62 (mc); δ (H)(PH) = 6.74 (dd, ¹J(PH) = 324.7 Hz, ²J(PH) = 17.4 Hz) ppm. EI-MS: m/z 900 (47%) [M]⁺; ν (CO) 2072m, 2025w, 1968s, 1959vs cm⁻¹; m.p. 168–168.5°C (dec.).

6.5. $(CO)_5 CrNEt_2(H)PP(Cl)NEt_2Cr(CO)_5$ (2)

A solution of 25 mmol of NEt₃ in 5 ml of pentane was added dropwise at 0°C to 10 mmol of $(CO)_5CrPHCINEt_2$ in 60 ml of pentane. The reaction was completed by stirring for 15 min, the precipitate then filtered off and the filtrate evaporated *in vacuo* at room temperature. The residue was taken up in pentane and the solution mixed with 20 ml of silica gel. After removal of the solvent, a powder-like product remained and this was placed on the top of a silica gel in a column (size 20×2.5 cm²). Elution at -30° C with pentane gave a yellow fraction, what was evaporated *in vacuo* at room tempeature to small volume then kept at -4° C to give yellow rhomb-shaped crystals in 40% yield.

Decacarbonyl- μ -1-chloro-1,2-bis(diethylamino)diphosphinedichromium (2). Anal. Found: C, 34.33; H, 3.29; N, 4.49; Cl, 5.49. C₁₈H₂₁ClCr₂N₂O₁₀P₂ (626.7) calc.: C, 34.49; H, 3.38; N, 4.47; Cl, 5.66%. ¹H NMR (in C₆D₆): δ (H)(PH) 6.96 (dd, ¹J(PH) = 357.8 Hz, ²J(PH) = 53.8 Hz); δ (H)_A(NCH₂) 3.30 (mc, ³J(PNCH) = 11.6 Hz); δ (H)_X(NCH₂) 3.10 (mc, ³J(PNCH) = 11.6 Hz); δ (H)_A(CH₃) 1.01 (t, ³J(HCCH) = 7.1 Hz); δ (H)_X(CH₃) 0.88 (t, ³J(HCCH) = 7.1 Hz) ppm. EI-MS: m/z 626 (4%) [M]⁺; ν (CO) 2059m, 1989s, 1962, 1956vs cm⁻¹; m.p. 84.5–85°C (dec.).

6.6. $(CO)_5 CrCl_2 PPCl_2 Cr(CO)_5$ (3) [12]

A solution of 5 mmol of NEt₃ in 5 ml of pentane was added dropwise with stirring to a solution of 10 mmol of $(CO)_5CrPHCl_2$ in 50 ml pentane at 0°C. When the addition was complete, the yellow mixture was stirred for a further 15 min, the solvent was removed *in vacuo* at room temperature and the residue treated with 20 ml of diethyl ether. The undissolved material was filtered off. When the filtrate was kept for several days at $-4^{\circ}C$ further product separated. For purification, the solid product was chromatographed (column size 5×2.5 cm²; eluent toluene), and the yellow fraction evaporated *in vacuo* to a small volume and kept at $-4^{\circ}C$ to give yellow crystals in 50% yield.

Decacarbonyl- μ -tetrachlorodiphosphinedichromium (3). C₁₀Cl₄Cr₂O₁₀P₂ (587.8) ³¹P{¹H} NMR (in C₆D₆): δ (P) 208.5 (s) ppm. EI-MS: m/z 588 (62%) [M]⁺; ν (CO): 2076m, 2000s, 1988vs cm⁻¹; m.p. 153–153.5°C (dec.).

6.7. $(CO)_5 CrPh(H)PP(F)PhCr(CO)_5$ (4)

A solution of 1 mmol of 1a in 40 ml of toluene was added dropwise with stirring to a suspension of an equimolar amount of tetrabutylammonium fluoride (TBAF) in 10 ml of toluene at room temperature. (The TBAF trihydrate used was dried for 5 h at 35° C in *vacuo* as described by Cox [18].) When the addition was complete, the mixture was stirred for 45 min, the solvent then evaporated *in vacuo* at room temperature, and the residue treated with 30 ml of diethyl ether then filtered off and dried *in vacuo*. The product was purified by chromatography on silica gel (eluent toluene; column size 5×2.5 cm²). The eluate was evaporated to small volume and kept at -4° C to give the pure isomer as yellow crystals in 70% yield.

Decacarbonyl- μ -1-fluoro-1,2-diphenyldiphosphinedichromium (4). Anal. Found: C, 42.16; H, 1.77; F, 3.20. C₂₂H₁₁Cr₂FO₁₀P₂ (620.2) calc.: C, 42.60; H, 1.79; F, 3.06%. ¹H NMR (in CDCl₃): δ (H)(C₆H₅) 7.24 (mc); δ (H)(PH) 5.54 (ddd, ¹J(PH) = 322.0 Hz, ²J(PH) = 17.5 Hz) ppm. ¹⁹F NMR (in C₆D₆): δ (F) 11.2 (ddd, ³J(FH) = 19.4 Hz) ppm. EI-MS: m/z 620 (32%) [M]⁺; ν (CO) 2064m, 2027w, 1981m, 1969, 1963vs cm⁻¹; m.p. 147°C (dec.).

6.8. $(CO)_{5}CrCl(H)PPCl_{2}Cr(CO)_{5}$ (5)

A solution of 2 mmol of 2 in 30 ml of Cl_2CH_2 was treated with gaseous hydrogen chloride for 20 min at -30° C. Removal of the solvent *in vacuo* at room temperature left a yellow powder which was treated with 20 ml of pentane and the precipitate removed by filtration. The filtrate was evaporated *in vacuo* at room temperature, and the crude product chromatographed on silica gel (eluent toluene; column size 5×2.5 cm²). The yellow fraction was reduced to a small volume then kept for several days at -30° C to allow complete crystallization. Compound **5** was obtained in 85% yield as yellow crystals.

Decacarbonyl- μ -1,2,2-trichlorodiphosphinedichromium (**5**). Anal. Found: C, 21.60; H, 0.18; Cl, 19.15. C₁₀HCl₃Cr₂O₁₀P₂ (553.4) calc.: C, 21.70; H, 0.18; Cl, 19.22%. ¹H NMR (in C₆D₆): δ (H)(PH) 6.75 (dd, ¹J(PH) = 345.6 Hz, ²J(PH) = 23.1 Hz) ppm. EI-MS: m/z 553 (70%) [M]⁺; ν (CO) 2075m, 2000s, 1990, 1987vs cm⁻¹; m.p. 95–96°C (dec.).

6.9. $(CO)_5 Cr(MeO)_2 PP(OMe)_2 Cr(CO)_5$ (6)

A solution of 2 mmol of 3 in 60 ml of methanol was stirred at room temperature for 3 days. The mixture was then reduced to a volume of 20 ml and kept for several days at -30° C to give 6 as a white solid in 90% yield.

Decacarbonyl- μ -tetramethoxydiphosphinedichromium (6). Anal. Found: C, 29.27; H, 1.89; Cr, 18.14. C₁₄H₁₂Cr₂O₁₄P₂ (570.1) calc.: C, 29.49; H, 2.12; Cr, 18.24%. ¹H NMR (in C₆D₆): δ (H)(CH₃) 3.55 (mc, ³J(POCH) = 11.2 Hz) ppm. EI-MS; m/z 568 (25%) [M]⁺; ν (CO) 2060m, 2026w, 1988m, 1968, 1958vs cm⁻¹; m,p. 160–161°C (dec.).

Acknowledgement

W.K. thanks the Fond der Chemischen Industrie for financial support.

References

- H. Keck, W. Kuchen, H. Renneberg and J.K. Terlouw, *Phosphorus Sulfur, 40* (1988) 277; H. Keck, W. Kuchen, J.K. Terlouw, P. Tommes and T. Wong, *Angew. Chem., 104* (1992) 65; *Angew. Chem., Int. Ed. Engl., 31* (1992) 612; T. Wong, J.K. Terlouw, H. Keck, W. Kuchen and P. Tommes J. Am. Chem. Soc., 114 (1992) 8208.
- A. Hinke, W. Kuchen and J. Kutter, Angew. Chem., 93 (1981)
 1112; Angew. Chem., Int. Ed. Engl., 20 (1981) 1060; A.-M. Hinke,
 A. Hinke and W. Kuchen, J. Organomet. Chem., 258 (1983) 307.
- 3 A. Hinke and W. Kuchen, unpublished results; A. Hinke, Dissertation, Universität Düsseldorf, 1981.
- 4 K. Diemert, A. Hinz, W. Kuchen and D. Lorenzen. J. Organomet. Chem., 393 (1990) 379.

- 5 A. Marinetti and F. Mathey, Organometallics, 1 (1982) 1488.
- 6 R.B. King and W.-K. Fu, J. Organomet. Chem., 272 (1984) C33.
- 7 R.B. King and W.-K. Fu, Inorg. Chem., 25 (1986) 2390.
- 8 M. Müller and H. Vahrenkamp, Chem. Ber., 116 (1983) 2322.
- 9 R. Mathieu, A.-M. Caminade, J.-P. Majoral, S. Attali and M. Sanchez, *Organometallics*, 5 (1986) 1914.
- 10 J.-P. Majoral, R. Mathieu, A.-M. Caminade, S. Attali and M. Sanchez, *Phosphorus Sulfur*, 30 (1987) 443.
- 11 J. Borm, G. Huttner, O. Orama and L. Zsolnai, J. Organomet. Chem., 282 (1985) 53.
- 12 H.P. Fritz and T. Schöttle, J. Organomet. Chem., 265 (1984) 175.
- 13 D. Troy and R. Turpin, Rev. Chim. Miner., 13 (1976) 589.
- 14 A.L. Chekhun, M.V. Proskurnina and I.F. Lutsenko, Zh. Obshch. Khim., 40 (1970) 2516.
- 15 M.V. Proskurnina, A.L. Chekhun and I.F. Lutsenko, Zh. Obshch. Khim., 43 (1973) 66.
- 16 S.V. Ponomarev, A.A. Stepanov, V.N. Sergeev and I.F. Lutsenko, Zh. Obshch. Khim., 48 (1978) 231.
- 17 D.W. Vidrine, H.J. Nicholas, J. Chromatogr., 89 (1974) 92.
- 18 D.P. Cox, J. Terpinski and W. Lawrynowicz, J. Org. Chem., 49 (1984) 3216.